All Issue

2024 Vol.34, Issue 1 Preview Page

Research Article

31 March 2024. pp. 107-115
Eastaugh, C.S., Hasenauer, H., 2014, Deriving forest fire ignition risk with biogeochemical process modelling, Environmental Modelling & Software, 55, 132-142. 10.1016/j.envsoft.2014.01.01826109905PMC4461190
Jaafari, A., Mafi-Gholami, D., Pham, B.T., Tien Bui, D., 2019, Wildfire probability mapping: bivariate vs. multivariate statistics, Remote Sensing, 11(6), 618. 10.3390/rs11060618
Kim, S.J., Lim, C.H., Kim, G.S., Lee, J., Geiger, T., Rahmati, O., Son, Y., Lee, W.K., 2019, Multi-temporal analysis of forest fire probability using socio-economic and environmental variables, Remote Sensing, 11(1), 86. 10.3390/rs11010086
Liu, Q., Shan, Y., Shu, L., Sun, P., Du, S., 2018, Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China, Journal of Forestry Research, 29, 1233-1239. 10.1007/s11676-018-0605-x
Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B., Foong, L.K., 2020, Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility, Journal of Environmental Management, 260, 109867. 10.1016/j.jenvman.2019.10986732090793
Philipp, M.B., Levick, S.R., 2020, Exploring the potential of C-band SAR in contributing to burn severity mapping in tropical Savanna, Remote Sensing, 12(1), 49. 10.3390/rs12010049
Piao, Y., Lee, D., Park, S., Kim, H.G., Jin, Y., 2022, Forest fire susceptibility assessment using Google Earth engine in Gangwon-do, Republic of Korea, Geomatics, Natural Hazards and Risk, 13(1), 432-450. 10.1080/19475705.2022.2030808
Plucinski, M.P., 2014, The timing of vegetation fire occurrence in a human landscape, Fire Safety Journal, 67, 42-52. 10.1016/j.firesaf.2014.05.012
Pourghasemi, H.R., Gayen, A., Panahi, M., Rezaie, F., Blaschke, T., 2019, Multi-hazard probability assessment and mapping in Iran, Science of The Total Environment, 692, 556-571. 10.1016/j.scitotenv.2019.07.20331351297
Pulvirenti, L., Squicciarino, G., Fiori, E., Fiorucci, P., Ferraris, L., Negro, D., Gollini, A., Severino, M., Puca, S., 2020, An automatic processing chain for near real-time mapping of burned forest areas using Sentinel-2 data, Remote Sensing, 12(4), 674. 10.3390/rs12040674
Venkatesh, K., Preethi, K., Ramesh, H., 2020, Evaluating the effects of forest fire on water balance using fire susceptibility maps, Ecological Indicators, 110, 105856. 10.1016/j.ecolind.2019.105856
Wang, X., Wotton, B.M., Cantin, A.S., Parisien, M.-A., Anderson, K., Moore, B., Flannigan, M.D., 2017, cffdrs: an R package for the Canadian Forest Fire Danger Rating System, Ecological Processes, 6, 5. 10.1186/s13717-017-0070-z
Zhang, G., Wang, M., Liu, K., 2019, Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China, International Journal of Disaster Risk Science, 10, 386-403. 10.1007/s13753-019-00233-1
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 34
  • No :1
  • Pages :107-115
  • Received Date : 2024-02-28
  • Revised Date : 2024-03-14
  • Accepted Date : 2024-03-15