All Issue

2022 Vol.32, Issue 2 Preview Page

Research Article

30 June 2022. pp. 221-239
Abstract
References
1
Chen, T., Guestrin, C., 2016, XGBoost: A scalable tree boosting system, 785-794. 10.1145/2939672.2939785
2
Ferreira, L., Pilastri, A., Martins, C.M., Pires, P.M., Cortez, P., 2021, A comparison of AutoML tools for machine learning, deep learning and XGBoost, Proceedings of the International Joint Conference on Neural Networks (IJCNN), Shenzhen, 1-8. 10.1109/IJCNN52387.2021.9534091
3
Jeong, Y.C., Rye, H.Y., Lee, S.J., Seo, D.J., Park, C.K., 2021, Identification recidivism risk factors study based on machine learning: Using decision tree analysis and random forest algorithm, Korean Police Research, 20(1), 323-350 (in Korean with English abstract). 10.38084/2021.20.1.14
4
Kim, D.S., 1989, Neural networks-theory and applications, Hitech Information, 59-144.
5
Kim, K.M., 2002, A prediction of the wedge failure stability of rock slope using artificial neural networks, MSc Thesis, Inha National University, 1-84 (in Korean with English abstract).
6
Kim, K.M., Park, H.J., Goo, T.H., Kim, H.C., 2020, A prediction of N-value using artificial neural network, The Journal of Engineering Geology, 30(4), 457-468 (in Korean with English abstract).
7
Kim, K.M., Park, H.J., Lee, J.B., Park, C.J., 2021, Prediction apparatus and method for N-value using artificial intelligence and data augmentation, Patent Application, DP210015, 4-38 (in Korean with English abstract).
8
Kingma, D.P., Ba, J.L., 2015, ADAM: A method for stochastic optimization, Proceedings of the 3rd International Conference for Learning Representations, San Diego, 1-15.
9
Navada, A., Ansari, A.N., Patil, S., Sonkamble, B.A., 2011, Overview of use of decision tree algorithms in machine learning, Proceedings of the IEEE Control and System Graduate Research Colloquium, Shah Alam, 37-42. 10.1109/ICSGRC.2011.5991826
10
Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H., 2016, Automating biomedical data science through tree-based pipeline optimization, EvoBIO 2016 Proceedings, 5-16. 10.1007/978-3-319-31204-0_9
11
Zöller, M.A., Huber, M.F., 2021, Benchmark and survey of automated machine learning frameworks, Journal of Artificial Intelligence Research 70, 409-472. 10.1613/jair.1.11854
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 32
  • No :2
  • Pages :221-239
  • Received Date :2022. 04. 05
  • Revised Date :2022. 05. 17
  • Accepted Date : 2022. 05. 17