All Issue

2022 Vol.32, Issue 3 Preview Page

Research Article

30 September 2022. pp. 377-388
Abdi, H., Williams, L.J., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. 10.1002/wics.101
Bergen, K.J., Johnson, P.A., de Hoop, M.V., Beroza, G.C., 2019, Machine learning for data-driven discovery in solid Earth geoscience, Science, 363(6433), eaau0323. 10.1126/science.aau032330898903
Beroza, G.C., Segou, M., Mostafa Mousavi, S., 2021, Machine learning and earthquake forecasting-next steps, Nature Communication, 12(1), 1-3. 10.1038/s41467-021-24952-634362887PMC8346575
Bolton, D.C., Shokouhi, P., Rouet-Leduc, B., Hulbert, C., Rivière, J., Marone, C., Johnson, P.A., 2019, Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning, Seismological Research Letters, 90(3), 1088-1098. 10.1785/0220180367
Bregman, Y., Rabin, N., 2019, Aftershock identification using diffusion maps, Seismological Research Letters, 90(2A), 539-545. 10.1785/0220180291
Chamberlain, C.J., Frank, W.B., Lanza, F., Townend, J., Warren-Smith, E., 2021, Illuminating the pre-, co-, and post-seismic phases of the 2016 M7.8 Kaikōura earthquake with 10 years of seismicity, Journal of Geophysical Research: Solid Earth, 126(8), e2021JB022304. 10.1029/2021JB022304
Chen, Y., 2020, Automatic microseismic event picking via unsupervised machine learning, Geophysical Journal International, 222(3), 1750-1764. 10.1093/gji/ggaa186
Di, H., Abubakar, A., 2022, Estimating subsurface properties using a semisupervised neural network approach, Geophysics, 87(1), IM1-IM10. 10.1190/geo2021-0192.1
Ekström, G., Nettles, M., Dziewoński, A.M., 2012, The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, 200, 1-9. 10.1016/j.pepi.2012.04.002
Feng, L., Hill, E.M., Banerjee, P., Hermawan, I., Tsang, L.L., Natawidjaja, D.H., Suwargadi, B.W., Sieh, K., 2015, A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013, Journal of Geophysical Research: Solid Earth, 120(5), 3566-3598. 10.1002/2014JB011661
Giallini, S., Paolucci, E., Sirianni, P., Albarello, D., Gaudiosi, I., Polpetta, F., Simionato, M., Stigliano, F., Tsereteli, N., Gogoladze, Z., Moscatelli, M., 2021, Reconstruction of a reference subsoil model for the seismic microzonation of Gori (Georgia): A procedure based on Principal Component Analysis (PCA), Bulletin of the Seismological Society of America, 111(4), 1921-1939. 10.1785/0120200341
Guerrieri, L., Baer, G., Hamiel, Y., Amit, R., Blumetti, A.M., Comerci, V., Manna, A., M., Michetti, A., Salamon, A., Mushkin, G., Vittori, E., 2010, InSAR data as a field guide for mapping minor earthquake surface ruptures: Ground displacements along the Paganica Fault during the 6 April 2009 L’Aquila earthquake, Journal of Geophysical Research: Solid Earth, 115(B12). 10.1029/2010JB007579
Hodgkinson, K., Langbein, J., Henderson, B., Mencin, D., Borsa, A., 2013, Tidal calibration of plate boundary observatory borehole strainmeters, Journal of Geophysical Research: Solid Earth, 118(1), 447-458. 10.1029/2012JB009651
Huang, H., Meng, L., Bürgmann, R., Wang, W., Wang, K., 2020, Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes, Earth and Planetary Science Letters, 551, 116582. 10.1016/j.epsl.2020.116582
Jung, D., Lee, J., Park, H., 2021, Feature expansion of single dimensional time series data for machine learning classification, Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), IEEE, 96-98. 10.1109/ICUFN49451.2021.9528690
Kagan, Y., Knopoff, L., 1978, Statistical study of the occurrence of shallow earthquakes, Geophysical Journal International, 55(1), 67-86. 10.1111/j.1365-246X.1978.tb04748.x
Kagan, Y.Y., 2003, Accuracy of modern global earthquake catalogs, Physics of the Earth and Planetary Interiors, 135(2-3), 173-209. 10.1016/S0031-9201(02)00214-5
Kilb, D., Gomberg, J., Bodin, P., 2002, Aftershock triggering by complete Coulomb stress changes, Journal of Geophysical Research: Solid Earth, 107(B4), ESE-2. 10.1029/2001JB000202
Kong, Q., Trugman, D.T., Ross, Z.E., Bianco, M.J., Meade, B.J., Gerstoft, P., 2019, Machine learning in seismology: Turning data into insights, Seismological Research Letters, 90(1), 3-14. 10.1785/0220180259
Kuang, W., Yuan, C., Zhang, J., 2021, Real-time determination of earthquake focal mechanism via deep learning, Nature Communications, 12(1), 1-8. 10.1038/s41467-021-21670-x33664244PMC7933283
Li, Z., Meier, M., Hauksson, E., Zhan, Z., Andrews, J., 2018, Machine learning seismic wave discrimination: Application to earthquake early warning, Geophysical Research Letters, 45(10), 4773-4779. 10.1029/2018GL077870
Liu, M., Zhang, M., Zhu, W., Ellsworth, W.L., Li, H., 2020, Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker, Geophysical Research Letters, 47(4), e2019GL086189. 10.1029/2019GL086189
Lomnitz, C., 1996, Search of a worldwide catalog for earthquakes triggered at intermediate distances, Bulletin of the Seismological Society of America, 86(2), 293-298. 10.1785/BSSA0860020293
Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.I., 2020, From local explanations to global understanding with explainable AI for trees, Nature Machine Intelligence, 2(1), 56-67. 10.1038/s42256-019-0138-932607472PMC7326367
Lundberg, S.M., Lee, S.I., 2017, A unified approach to interpreting model predictions, Advances in Neural Information Processing Systems, 30.
Lv, A., Cheng, L., Aghighi, M.A., Masoumi, H., Roshan, H., 2021, A novel workflow based on physics-informed machine learning to determine the permeability profile of fractured coal seams using downhole geophysical logs, Marine and Petroleum Geology, 131, 105171. 10.1016/j.marpetgeo.2021.105171
Macciotta, N.P.P., Gaspa, G., Steri, R., Nicolazzi, E.L., Dimauro, C., Pieramati, C., Cappio-Borlino, A., 2010, Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis, Journal of Dairy Science, 93(6), 2765-2774. 10.3168/jds.2009-302920494186
Marone, C., 2018, Training machines in Earthly ways, Nature Geoscience, 11(5), 301-302. 10.1038/s41561-018-0117-5
McBeck, J., Aiken, J.M., Ben-Zion, Y., Renard, F., 2020, Predicting the proximity to macroscopic failure using local strain populations from dynamic in situ X-ray tomography triaxial compression experiments on rocks, Earth and Planetary Science Letters, 543(C), 116344. 10.1016/j.epsl.2020.116344
Meier, M.A., Ross, Z.E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Andrews, J., Yue, Y., 2019, Reliable real-time seismic signal/noise discrimination with machine learning, Journal of Geophysical Research: Solid Earth, 124(1), 788-800. 10.1029/2018JB016661
Nanjo, K.Z., Hirata, N., Obara, K., Kasahara, K., 2012, Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes, Geophysical Research Letters, 39(20). 10.1029/2012GL052997
Nolan, R.H., Boer, M.M., Resco de Dios, V., Caccamo, G., Bradstock, R.A., 2016, Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia, Geophysical Research Letters, 43(9), 4229-4238. 10.1002/2016GL068614
Nuannin, P., Kulhanek, O., Persson, L., 2005, Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004, Geophysical Research Letters, 32(11). 10.1029/2005GL022679
Paolucci, E., Lunedei, E., Albarello, D., 2017, Application of the principal component analysis (PCA) to HVSR data aimed at the seismic characterization of earthquake prone areas, Geophysical Journal International, 211(1), 650-662. 10.1093/gji/ggx325
Partridge, M., Calvo, R.A., 1998, Fast dimensionality reduction and simple PCA, Intelligent Data Analysis, 2(3), 203-214. 10.3233/IDA-1998-2304
Ren, C.X., Dorostkar, O., Rouet-Leduc, B., Hulbert, C., Strebel, D., Guyer, R.A., Johnson, P.A., Carmeliet, J., 2019, Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault, Geophysical Research Letters, 46(13), 7395-7403. 10.1029/2019GL082706
Ross, Z.E., Idini, B., Jia, Z., Stephenson, O.L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E., J., Jung, J., 2019, Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence, Science, 366(6463), 346-351. 10.1126/science.aaz010931624209
Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C.J., Johnson, P.A., 2017, Machine learning predicts laboratory earthquakes, Geophysical Research Letters, 44(18), 9276-9282. 10.1002/2017GL074677
Tan, Y.J., Waldhauser, F., Ellsworth, W.L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G., C., Segou, M., 2021, Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016-2017 Central Italy sequence, The Seismic Record, 1(1), 11-19. 10.1785/0320210001
Toda, S., Stein, R.S., Richards-Dinger, K., Bozkurt, S.B., 2005, Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, Journal of Geophysical Research: Solid Earth, 110(B5). 10.1029/2004JB003415
Utsu, T., Ogata, Y., 1995, The centenary of the Omori formula for a decay law of aftershock activity, Journal of Physics of the Earth, 43(1), 1-33. 10.4294/jpe1952.43.1
Vasan, K.K., Surendiran, B., 2016, Dimensionality reduction using principal component analysis for network intrusion detection, Perspectives in Science, 8, 510-512. 10.1016/j.pisc.2016.05.010
Wang, X., Zhan, Z., 2020, Seismotectonics and fault geometries of the 2019 Ridgecrest sequence: Insight from aftershock moment tensor catalog using 3-D Green’s functions, Journal of Geophysical Research: Solid Earth, 125(5), e2020JB019577. 10.1029/2020JB01957733282617PMC7685155
Zhao, L., Zou, C., Chen, Y., Shen, W., Wang, Y., Chen, H., Geng, J., 2021, Fluid and lithofacies prediction based on integration of well-log data and seismic inversion: A machine-learning approach, Geophysics, 86(4), M151-M165. 10.1190/geo2020-0521.1
Zhu, W., Beroza, G.C., 2019, PhaseNet: A deep-neural-network-based seismic arrival-time picking method, Geophysical Journal International, 216(1), 261-273. 10.1093/gji/ggy423
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 32
  • No :3
  • Pages :377-388
  • Received Date :2022. 09. 13
  • Revised Date :2022. 09. 23
  • Accepted Date : 2022. 09. 27