All Issue

2022 Vol.32, Issue 4 Preview Page

Research Article

31 December 2022. pp. 697-723
Afzaal, H., Farooque, A.A., Abbas, F., Acharya, B., Esau, T., 2020, Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning, Water, 12, 5. 10.3390/w12010005
Altunkaynak, A., 2007, Forecasting surface water level fluctuations of Lake Van by artificial neural networks, Water Resources Management, 21(2), 399-408. 10.1007/s11269-006-9022-6
Castillo, E., Conejo, A.J., Castillo, C., Minguez, R., Ortigosa, D., 2006, Perturbation approach to sensitivity analysis in mathematical programming, Journal of Optimization Theory and Applications, 128, 49-74. 10.1007/s10957-005-7557-y
Chang, F.J., Chen, P.A., Lu, Y.R., Huang, E., Chang, K.Y., 2014, Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control, Journal of Hydrology, 517, 836-846. 10.1016/j.jhydrol.2014.06.013
Coulibaly, P., Anctil, F., Aravena, R., Bobée, B., 2001, Artificial neural network modeling of water table depth fluctuations, Water Resources Research, 37(4), 885-896. 10.1029/2000WR900368
Custodio, E., 2000, The complex concept of overexploited aquifer, Papeles de la Fundación Marcelino Botín, 1-45.
Famiglietti, J., 2014, The global groundwater crisis, Nature Climate Change, 4, 945-948. 10.1038/nclimate2425
Giordano, M., 2009, Global groundwater? Issues and solutions, Annual Review of Environment and Resources, 34, 153-178. 10.1146/annurev.environ.030308.100251
Hochreiter, S., Schmidhuber, J., 1997, Long short-term memory, Neural Computation, 9, 1735-1780. 10.1162/neco.1997.9.8.17359377276
Jeju Province, 2018, Water resources management plan in Jeju Province 2018-2022.
Jeong, J., Park, E., 2019, Comparative applications of data-driven models representing water table fluctuations, Journal of Hydrology, 572, 261-273. 10.1016/j.jhydrol.2019.02.051
Jeong, J., Park, J., Koh, E.H., Park, W.B., Jeong, J., 2022, A study on the hydraulic factors of groundwater level fluctuation by region in Jeju island, The Journal of Engineering Geology, 32(2), 257-270 (in Korean with English abstract).
Jung, W.Y., Yang, S.K., 2009, Simulation on runoff of rivers in Jeju Island using SWAT model, Journal of the Environmental Science, 18, 1045-1055 (in Korean with English abstract). 10.5322/JES.2009.18.9.1045
Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Mladenić, D., 2018, Groundwater modeling with machine learning techniques: Ljubljana polje aquifer, Multidisciplinary Digital Publishing Institute Proceedings, 2(11), 697. 10.3390/proceedings2110697
Kim, G., Lee, K.K., Park, K.S., Hwang, D.W., Yang, H.S., 2003, Large submarine groundwater discharge (SGD) from a volcanic island, Geophysical Research Letters, 30. 10.1029/2003GL018378
Kim, J., 2021, Current status of Jeju special self-governing province’s water infrastructure and direction for improvement, Journal of Korean Society of Water and Wastewater, 35, 497-505 (in Korean with English abstract). 10.11001/jksww.2021.35.6.497
Kim, M.C., Yang, S.K., 2019, Analysis of groundwater flow characterstics and hydraulic conductivity in Jeju Island using groundwater model, Journal of Environmental Science International, 28(12), 1157-1169 (in Korean with English abstract). 10.5322/JESI.2019.28.12.1157
Kim, N., Na, H., Chung, I.M., Kim, Y., 2014, Empirical formula of delay time for groundwater recharge in the representative watersheds, Jeju Island, Journal of Korea Water Resources Association, 47(9), 743-752 (in Korean with English abstract). 10.3741/JKWRA.2014.47.9.743
Lee, S., Jeong, J., Kim, M., Park, W., Kim, Y., Park, J., Park, H., Park, G., Jeong, J., 2021, Data-driven analysis for developing the effective groundwater management system in Daejeong-Hangyeong watershed in Jeju island, Economic and Environmental Geology, 54(3), 373-387 (in Korean with English abstract). 10.9719/EEG.2021.54.3.373
Liu, D., Li, G., Fu, Q., Li, M., Liu, C., Faiz, M.A., Cui, S., 2018, Application of particle swarm optimization and extreme learning machine forecasting models for regional groundwater depth using nonlinear prediction models as preprocessor, Journal of Hydrologic Engineering, 23(12), 04018052. 10.1061/(ASCE)HE.1943-5584.0001711
Maier, H.R., Dandy, G.C., 1996, The use of artificial neural networks for the prediction of water quality parameters, Water Resources Research, 32(4), 1013-1022. 10.1029/96WR03529
Müller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., Agarwal, D., 2021, Surrogate optimization of deep neural networks for groundwater predictions, Journal of Global Optimization, 81, 203-231. 10.1007/s10898-020-00912-0
Park, E., Jeong, J., Choung, S., Han, W., Kim, K.Y., S, H., 2021, A method for integrating delayed recharge flux through unsaturated zones into analytical and numerical groundwater flow modeling, Water Resources Research, 57. 10.1029/2020WR027655
Prabhakaran, V., Hutchinson, B., Mitchell, M., 2019, Perturbation sensitivity analysis to detect unintended model biases, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 5740-5745. 10.18653/v1/D19-1578
Shin, K.H., Koo, M.H., Chung, I.M., Kim, N.W., Kim, G.P., 2014, analyzing spatio-temporal variation of groundwater recharge in Jeju Island by using a convolution method, Journal of Environmental Science International, 23(4), 625-635 (in Korean with English abstract). 10.5322/JESI.2014.4.625
Shin, M.J., Moon, S.H., Koh, G.W., Moon, D.C., 2020, Estimation of delay time between precipitation and groundwater level in the middle mountain area of Pyoseon watershed in Jeju Island using moving average method and cross correlation coefficient, Journal of Korea Water Resources Association, 53(7), 553-543 (in Korean with English abstract).
Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Doell, P., Portmann, F.T., 2010, Groundwater use for irrigation - a global inventory, Hydrology and Earth System Science, 14, 1863-1880. 10.5194/hess-14-1863-2010
Snoek, J., Larochelle, H., Adams, R.P., 2012, Practical Bayesian optimization of machine learning algorithms, Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2, 2951-2959.
Taylor, R.G, Scanlon, B., Doell, P., Rodell, M., Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M.F.P., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., Treidel, H., 2013, Ground water and climate change, Nature Climate Change, 3, 322-329. 10.1038/nclimate1744
Won, J.H., Lee, J.Y., Kim, J.W., Koh, G.W., 2006, Groundwater occurrence on Jeju Island, Korea, Hydrogeology Journal, 14, 532-547. 10.1007/s10040-005-0447-4
Wunsch, A., Liesch, T., Broda, S., 2018, Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX), Journal of Hydrology, 567, 743-758. 10.1016/j.jhydrol.2018.01.045
Yang, S.K, 2007, River management and improvement measured of Jeju island, River & Culture, Korea River Association, 3, 105-115.
Young, C.C., Liu, W.C., Hsieh, W.L., 2015, Predicting the water level fluctuation in an alpine lake using physically based, artificial neural network, and time series forecasting models, Mathematical Problems in Engineering, 2015, 708204. 10.1155/2015/708204
Zhang, J., Zhu, Y., Zhang, X., Ye, M., Yang, J., 2018, Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas, Journal of Hydrology, 561, 918-929. 10.1016/j.jhydrol.2018.04.065
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 32
  • No :4
  • Pages :697-723
  • Received Date :2022. 12. 15
  • Revised Date :2022. 12. 28
  • Accepted Date : 2022. 12. 28