All Issue

2022 Vol.32, Issue 4 Preview Page

Research Article

31 December 2022. pp. 643-659
Abstract
References
1
Aagaard, B.T., Knepley, M.G., Williams, C.A., 2013, A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research: Solid Earth, 118, 3059-3079. 10.1002/jgrb.50217
2
Agathos, K., Chatzi, E., Bordas, S.P., Talaslidis, D., 2016, A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture, International Journal for Numerical Methods in Engineering, 105, 643-677. 10.1002/nme.4982
3
Ahrens, J., Geveci, B., law, C., 2005, Paraview: An end-user tool for large data visualization, The Visualization Handbook, 717-731. 10.1016/B978-012387582-2/50038-1
4
Altmann, J.B., Müller, T.M., Müller, B.I., Tingay, M.R., Heidbach, O., 2010, Poroelastic contribution to the reservoir stress path, International Journal of Rock Mechanics and Mining Sciences, 47, 1104-1113. 10.1016/j.ijrmms.2010.08.001
5
Bagge, M., Hampel, A., 2016, Three-dimensional finite-element modelling of coseismic Coulomb stress changes on intra-continental dip-slip faults, Tectonophysics, 684, 52-62. 10.1016/j.tecto.2015.10.006
6
Barbot, S., Fialko, Y., 2010, A unified continuum representation of post-seismic relaxation mechanisms: Semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow, Geophysical Journal International, 182(3), 1124-1140. 10.1111/j.1365-246X.2010.04678.x
7
Biot, M.A., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155-164. 10.1063/1.1712886
8
Brunsting, S., Desbarats, J., de Best-Waldhober, M., Duetschke, E., Oltra, C., Upham, P., Riesch, H., 2011, The public and CCS: The importance of communication and participation in the context of local realities, Energy Procedia, 4, 6241-6247. 10.1016/j.egypro.2011.02.637
9
Cao, W., Verdon, J.P., Tao, M., 2022, Coupled poroelastic modelling of hydraulic fracturing-induced seismicity: Implications for understanding the post shut-in ML 2.9 earthquake at the Preston New Road, UK, Journal of Geophysical Research: Solid Earth, 127, e2021JB023376. 10.1029/2021JB023376
10
Chang, D., Boulanger, R., Brandenberg, S., Kutter, B., 2013, FEM analysis of dynamic soil-pile-structure interaction in liquefied and laterally spreading ground, Earthquake Spectra, 29(3), 733-755. 10.1193/1.4000156
11
Chang, K.W., Segall, P., 2016, Injection-induced seismicity on basement faults including poroelastic stressing, Journal of Geophysical Research: Solid Earth, 121(4), 2708-2726. 10.1002/2015JB012561
12
Chang, K.W., Yoon, H., 2020, Hydromechanical controls on the spatiotemporal patterns of injection-induced seismicity in different fault architecture: Implication for 2013-2014 Azle earthquakes, Journal of Geophysical Research: Solid Earth, 125, e2020JB020402. 10.1029/2020JB020402
13
Cipolla, C., Weng, X., Mack, M., Ganguly, U., Gu, H., Kresse, O., Cohen, C., 2012, Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity, Proceedings of the SPE/EAGE European Unconventional Resources Conference & Exhibition - From Potential to Production, Copenhagen, Denmark, cp-285. 10.2118/140185-MS
14
De Simone, S., Carrera, J., Vilarrasa, V., 2017, Superposition approach to understand triggering mechanisms of post-injection induced seismicity, Geothermics, 70, 85-97. 10.1016/j.geothermics.2017.05.011
15
Deichmann, N., Giardini, D., 2009, Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland), Seismological Research Letters, 80, 784-798. 10.1785/gssrl.80.5.784
16
Deng, K., Liu, Y., Harrington, R.M., 2016, Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence, Geophysical Research Letters, 43, 8482-8491. 10.1002/2016GL070421
17
Dütschke, E., 2011, What drives local public acceptance - Comparing two cases from Germany, Energy Procedia, 4, 6234-6240. 10.1016/j.egypro.2011.02.636
18
Ellsworth, W.L., 2013, Injection-induced earthquakes, Science, 341, 1225942. 10.1126/science.122594223846903
19
Ge, S., Saar, M.O., 2022, Review: Induced seismicity during geoenergy development-A hydromechanical perspective, Journal of Geophysical Research: Solid Earth, 127(3), e2021JB023141. 10.1029/2021JB023141
20
Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., Brodsky, E.E., 2017, The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells, Earth and Planetary Science Letters, 472, 50-61. 10.1016/j.epsl.2017.05.011
21
Haug, J.K., Stigson, P., 2016, Local acceptance and communication as crucial elements for realizing CCS in the Nordic region, Energy Procedia, 86, 315-323. 10.1016/j.egypro.2016.01.032
22
Hoffmann, J., Hafner, C., Leidenberger, P., Hesselbarth, J., Burger, S., 2009, Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas, Proceedings of SPIE, 7390, 174-184. 10.1117/12.828036
23
Horton, S., 2012, Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake, Seismological Research Letters, 83, 250-260. 10.1785/gssrl.83.2.250
24
Hughes, K.L.H., Masterlark, T., Mooney, W.D., 2010, Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake, Earth and Planetary Science Letters, 293, 289-299. 10.1016/j.epsl.2010.02.043
25
Hui, G., Chen, S., Chen, Z., He, Y., Wang, S., Gu, F., 2021, Investigation on two Mw 3.6 and Mw 4.1 earthquakes triggered by poroelastic effects of hydraulic fracturing operations near Crooked Lake, Alberta, Journal of Geophysical Research: Solid Earth, 126, e2020JB020308. 10.1029/2020JB020308
26
Jha, B., Juanes, R., 2014, Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resources Research, 50, 3776-3808. 10.1002/2013WR015175
27
Jin, L., Zoback, M.D., 2018, Fully dynamic spontaneous rupture due to quasi-static pore pressure and poroelastic effects: An implicit nonlinear computational model of fluid-induced seismic events, Journal of Geophysical Research: Solid Earth, 123, 9430-9468. 10.1029/2018JB015669
28
Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A., Ge, S., 2014, Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345, 448-451. 10.1126/science.125580224993347
29
Kim, H.S., Kim, M.S., Kim, N.W., So, B.D., 2022, Numerical investigation for the effect of the subducting slab geometry on the postseismic deformation using finite element method, Journal of the Geological Society of Korea, 58, 191-203 (in Korean with English abstract). 10.14770/jgsk.2022.58.2.191
30
Kim, S., Hosseini, S.A., 2014, Above-zone pressure monitoring and geomechanical analyses for a field-scale CO2 injection project in Cranfield, MS, Greenhouse Gases: Science and Technology, 4(1), 81-98. 10.1002/ghg.1388
31
King, G.C., Stein, R.S., Lin, J., 1994, Static stress changes and the triggering of earthquakes, Bulletin of the Seismological Society of America, 84, 935-953.
32
Kraeusel, J., Möst, D., 2012, Carbon capture and storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany, Energy Policy, 49, 642-651. 10.1016/j.enpol.2012.07.006
33
Lee, C.I., Min, K.B., 2013, Effect of ground vibration on surface structures and human environments -Application of blasting vibration to induced seismicity in EGS hydraulic stimulation-, Tunnel and Underground Space, 23, 521-537 (in Korean with English abstract). 10.7474/TUS.2013.23.6.521
34
Lee, H.J., Park, E.G., Kim, K.J., Park, K.H., 2008, A joint application of DRASTIC and numerical groundwater flow model for the assessment of groundwater vulnerability of Buyeo-eup area, Journal of Soil and Groundwater Environment, 13, 77-91 (in Korean with English abstract).
35
Lee, H.J., So, B.D., 2020, Numerical simulation of coseismic and postseismic deformation using finite element modeling with weak elastic fault, Journal of the Geological Society of Korea, 56(6), 771-787 (in Korean with English abstract). 10.14770/jgsk.2020.56.6.771
36
Lee, S.H., So, B.D., 2019, Two dimensional finite element numerical model for slab detachment using Arbitrary Lagrangian Eulerian and remeshing, Journal of the Geological Society of Korea, 55(6), 663-682 (in Korean with English abstract). 10.14770/jgsk.2019.55.6.663
37
McCormack, K.A., Hesse, M.A., 2018, Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event, Advances in Water Resources, 114, 236-248. 10.1016/j.advwatres.2018.02.014
38
McCormack, K., Hesse, M.A., Dixon, T., Malservisi, R., 2020, Modeling the contribution of poroelastic deformation to postseismic geodetic signals, Geophysical Research Letters, 47(8), e2020GL086945. 10.1029/2020GL086945
39
Nolte, K.A., Tsoflias, G.P., Bidgoli, T.S., Lynn W.W., 2017, Shear-wave anisotropy reveals pore fluid pressure-induced seismicity in the U.S. midcontinent, Science Advances, 3, e1700443. 10.1126/sciadv.170044329255798PMC5733107
40
Pampillón, P., Santillán, D., Mosquera, J.C., Cueto-Felgueroso, L., 2018, Dynamic and quasi-dynamic modeling of injection-induced earthquakes in poroelastic media, Journal of Geophysical Research: Solid Earth, 123, 5730-5759. 10.1029/2018JB015533
41
Papadimitriou, E.E., 2002, Mode of strong earthquake recurrence in the central Ionian Islands (Greece): Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks, Bulletin of the Seismological Society of America, 92(8), 3293-3308. 10.1785/0120000290
42
Piombo, A., Martinelli, G., Dragoni, M., 2005, Post-seismic fluid flow and Coulomb stress changes in a poroelastic medium, Geophysical Journal International, 162, 507-515. 10.1111/j.1365-246X.2005.02673.x
43
Rathnaweera, T.D., Wu, W., Ji, Y., Gamage, R.P., 2020, Understanding injection-induced seismicity in enhanced geothermal systems: From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction, Earth-Science Reviews, 205, 103182. 10.1016/j.earscirev.2020.103182
44
Rinaldi, A.P., Vilarrasa, V., Rutqvist, J., Cappa, F., 2015, Fault reactivation during CO2 sequestration: Effects of well orientation on seismicity and leakage, Greenhouse Gases: Science and Technology, 5, 645-656. 10.1002/ghg.1511
45
Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007, Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Conversion and Management, 48, 1798-1807. 10.1016/j.enconman.2007.01.021
46
Rutqvist, J., Vasco, D.W., Myer, L., 2010, Coupled reservoir-geomechanical analysis of CO2 injection at In Salah, Algeria, Energy Procedia, 1(1), 1847-1854. 10.1016/j.egypro.2009.01.241
47
Safari, R., Ghassemi, A., 2016, Three-dimensional poroelastic modeling of injection induced permeability enhancement and microseismicity, International Journal of Rock Mechanics and Mining Sciences, 84, 47-58. 10.1016/j.ijrmms.2015.12.007
48
Segall, P., 1989, Earthquakes triggered by fluid extraction, Geology, 17, 942-946. 10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
49
Segall, P., Lu, S., 2015, Injection-induced seismicity: Poroelastic and earthquake nucleation effects, Journal of Geophysical Research: Solid Earth, 120, 5082-5103. 10.1002/2015JB012060
50
Shan, B., Xiong, X., Wang, R., Zheng, Y., Yang, S., 2013, Coulomb stress evolution along Xianshuihe-Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008, Earth and Planetary Science Letters, 377-378, 199-210. 10.1016/j.epsl.2013.06.044
51
Shukla, R., Ranjith, P., Haque, A., Choi, X., 2010, A review of studies on CO2 sequestration and caprock integrity, Fuel, 89(10), 2651-2664. 10.1016/j.fuel.2010.05.012
52
Stanislavsky, E., Garven, G., 2002, The minimum depth of fault failure in compressional environments, Geophysical Research Letters, 29(24), 8-1. 10.1029/2002GL016363
53
Stephens, J.C., Jiusto, S., 2010, Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA, Energy Policy, 38, 2020-2031. 10.1016/j.enpol.2009.12.003
54
Tapia, J.F.D., Lee, J., Ooi, R.E., Foo, D.C., Tan, R.R., 2018, A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems, Sustainable Production and Consumption, 13, 1-15. 10.1016/j.spc.2017.10.001
55
Terwel, B.W., ter Mors, E., Daamen, D.D., 2012, It’s not only about safety: Beliefs and attitudes of 811 local residents regarding a CCS project in Barendrecht, International Journal of Greenhouse Gas Control, 9, 41-51. 10.1016/j.ijggc.2012.02.017
56
van Egmond, S., Hekkert, M.P., 2015, Analysis of a prominent carbon storage project failure - The role of the national government as initiator and decision maker in the Barendrecht case, International Journal of Greenhouse Gas Control, 34, 1-11. 10.1016/j.ijggc.2014.12.014
57
Wang, H., 2000, Theory of linear poroelasticity with applications to geomechanics and hydrogeology (Vol. 2), Princeton University Press, 304p. 10.1515/9781400885688
58
Weingarten, M., Ge, S., Godt, J.W., Bekins, B.A., Rubinstein, J.L., 2015, High-rate injection is associated with the increase in US mid-continent seismicity, Science, 348(6241), 1336-1340. 10.1126/science.aab134526089509
59
Wetzler, N., Shalev, E., Göbel, T., Amelung, F., Kurzon, I., Lyakhovsky, V., Brodsky, E.E., 2019, Earthquake swarms triggered by groundwater extraction near the dead sea fault, Geophysical Research Letters, 46, 8056-8063. 10.1029/2019GL083491
60
Williams, C.A., Wallace, L.M., 2015, Effects of material property variations on slip estimates for subduction interface slow-slip events, Geophysical Research Letters, 42, 1113-1121. 10.1002/2014GL062505
61
Willson, J.P., Lunn, R.J., Shipton, Z.K., 2007, Simulating spatial and temporal evolution of multiple wing cracks around faults in crystalline basement rocks, Journal of Geophysical Research: Solid Earth, 112, B08408. 10.1029/2006JB004815
62
Xue, L., Moucha, R., Scholz, C.A., 2022, Climate-driven stress changes and normal fault behavior in the Lake Malawi (Nyasa) Rift, East Africa, Earth and Planetary Science Letters, 593, 117693. 10.1016/j.epsl.2022.117693
63
Yeck, W.L., Weingarten, M., Benz, H.M., McNamara, D.E., Bergman, E.A., Herrmann, R.B., Rubinstein, J.L., Earle, P.S., 2016, Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure, Geophysical Research Letters, 43, 10198-10207. 10.1002/2016GL070861
64
Yeo, I.W., Brown, M., Ge, S., Lee, K.K., 2020, Causal mechanism of injection-induced earthquakes through the Mw 5.5 Pohang earthquake case study, Nature Communications, 11, 1-12. 10.1038/s41467-020-16408-032457321PMC7251101
65
Yim, J., Min, K.B., 2022, A hydro-mechanical basic study on the effect of shut-in on injection-induced seismic magnitude, Tunnel and Underground Space, 30, 203-218 (in Korean with English abstract).
66
Zhang, Y., Person, M., Rupp, J., Ellett, K., Celia, M.A., Gable, C.W., Bowen, B., Evans, J., Bandilla, K., Mozley, P., Dewers, T., Elliot, T., 2013, Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs, Groundwater, 51(4), 525-538. 10.1111/gwat.1207123745958
67
Zienkiewicz, O.C., Taylor, R.L., 2005, The finite element method for solid and structural mechanics, Elsevier, 736p.
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 32
  • No :4
  • Pages :643-659
  • Received Date : 2022-11-28
  • Revised Date : 2022-12-15
  • Accepted Date : 2022-12-19