All Issue

2022 Vol.32, Issue 4 Preview Page

Research Article

31 December 2022. pp. 627-642
Abstract
References
1
Angino, E.E., Coveney, R.M.J., Goebel, E.D., Zeller, E.J., Dreschhoff, G.A.M., 1984, Hydrogen and nitrogen - origin, distribution, and abundance, a followup, Oil and Gas Journal, 82, 142-146.
2
Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., Humphris, S.E., 2006, Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274), Geophysical Research Letters, 33(13), L13306. 10.1029/2006GL025681
3
Berndt, M.E., Allen, D.E., Seyfried Jr, W.E., 1996, Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar, Geology, 24(4), 351-354. 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2
4
Blattner, P., 1985, Isotope shift data and the natural evolution of geothermal systems, Chemical Geology, 49(1-3), 187-203. 10.1016/0009-2541(85)90155-X
5
Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., Champion, D., Blewett, R., Feitz, A., Henson, P.A., 2021, Hydrogen in Australian natural gas: Occurrences, sources and resources, The APPEA Journal, 61(1), 163-191. 10.1071/AJ20044
6
Bowers, T.S., 1989, Stable isotope signatures of water-rock interaction in mid-ocean ridge hydrothermal systems: Sulfur, oxygen, and hydrogen, Journal of Geophysical Research: Solid Earth, 94(B5), 5775-5786. 10.1029/JB094iB05p05775
7
Bryanchaninova, N.I., Dubinina, E.O., Makeev, A.B., 2004, Hydrogen isotope geochemistry of chromite-bearing ultramafic rocks of the Urals, Doklady Earth Sciences, 395(3), 359-363.
8
Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’N, MAR), Chemical Geology, 191(4), 345-359. 10.1016/S0009-2541(02)00134-1
9
Des Marais, D.J., 2007, Stable light isotope biogeochemistry of hydrothermal systems, In: Bock, G.R., Goode, J.A. (Eds.), Ciba Foundation Symposium 202 - Evolution of Hydrothermal Ecosystems on Earth (And Mars?), John Wiley & Sons, Ltd., 83-98. 10.1002/9780470514986.ch59243011
10
Deville, E., Prinzhofer, A., 2016, The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia, Chemical Geology, 440, 139-147. 10.1016/j.chemgeo.2016.06.011
11
Ehhalt, D.H., Rohrer, F., 2009, The tropospheric cycle of H2: A critical review, Tellus B: Chemical and Physical Meteorology, 61(3), 500-535. 10.1111/j.1600-0889.2009.00416.x
12
Etiope, G., Schoell, M., Hosgörmez, H., 2011, Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars, Earth and Planetary Science Letters, 310(1-2), 96-104. 10.1016/j.epsl.2011.08.001
13
Flores, G.E., Campbell, J.H., Kirshtein, J.D., Meneghin, J., Podar, M., Steinberg, J.I., Seewald, J.S., Tivey, M.K., Voytek, M.A., Yang, Z.K., Reysenbach, A.L., 2011, Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge, Environmental Microbiology, 13(8), 2158-2171. 10.1111/j.1462-2920.2011.02463.x21418499
14
Frost, B.R., 1985, On the stability of sulfides, oxides, and native metals in serpentinite, Journal of Petrology, 26(1), 31-63. 10.1093/petrology/26.1.31
15
Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S., Mothersole, F.E., 2013, The process of serpentinization in dunite from New Caledonia, Lithos, 178, 24-39. 10.1016/j.lithos.2013.02.002
16
Holm, N.G., Charlou, J.L., 2001, Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge, Earth and Planetary Science Letters, 191(1-2), 1-8. 10.1016/S0012-821X(01)00397-1
17
Janecky, D.R., Seyfried Jr, W.E., 1986, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, Geochimica et Cosmochimica Acta, 50(7), 1357-1378. 10.1016/0016-7037(86)90311-X
18
Jones, L.C., Rosenbauer, R., Goldsmith, J.I., Oze, C., 2010, Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts, Geophysical Research Letters, 37(14), L14306. 10.1029/2010GL043769
19
Kim, J.H., Park, D.K., Kim, J.H., Kim, H.J., Kim, H.S., Kang, S.H., Ryu, J.H., 2021, Trend of CO2 free H2 production technology for carbon neutrality, Journal of Energy & Climate Change, 16(2), 103-127 (in Korean with English abstract).
20
Klein, F., Tarnas, J.D., Bach, W., 2020, Abiotic sources of molecular hydrogen on Earth, Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(1), 19-24. 10.2138/gselements.16.1.19
21
Kyser, T.K., O’Hanley, D.S., Wicks, F.J., 1999, The origin of fluids associated with serpentinization; evidence from stable-isotope compositions, The Canadian Mineralogist, 37(1), 223-237.
22
Lang, S.Q., Früh-Green, G.L., Bernasconi, S.M., Lilley, M.D., Proskurowski, G., Méhay, S., Butterfield, D.A., 2012, Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system, Geochimica et Cosmochimica Acta, 92, 82-99. 10.1016/j.gca.2012.06.006
23
Lazar, C., 2020, Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700°C and from 1 to 20 kbar, Journal of Petrology, 61(11-12), egaa101. 10.1093/petrology/egaa101
24
Lollar, B.S., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J., 2014, The contribution of the Precambrian continental lithosphere to global H2 production, Nature, 516(7531), 379-382. 10.1038/nature1401725519136
25
Magaritz, M., Taylor Jr, H.P., 1974, Oxygen and hydrogen isotope studies of serpentinization in the Troodos ophiolite complex, Cyprus, Earth and Planetary Science Letters, 23(1), 8-14. 10.1016/0012-821X(74)90023-5
26
Marques, J.M., Matias, M.J., Basto, M.J., Carreira, P.M., Aires-Barros, L.A., Goff, F.E., 2010, Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks, Geothermics, 39(2), 152-160. 10.1016/j.geothermics.2010.03.002
27
Mayhew, L.E., Ellison, E.T., McCollom, T.M., Trainor, T.P., Templeton, A.S., 2013, Hydrogen generation from low-temperature water-rock reactions, Nature Geoscience, 6(6), 478-484. 10.1038/ngeo1825
28
McCollom, T.M., Donaldson, C., 2016, Generation of hydrogen and methane during experimental low-temperature reaction of ultramafic rocks with water, Astrobiology, 16(6), 389-406. 10.1089/ast.2015.138227267306
29
McCollom, T.M., Klein, F., Moskowitz, B., Berquó, T.S., Bach, W., Templeton, A.S., 2020, Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture, Geochimica et Cosmochimica Acta, 282, 55-75. 10.1016/j.gca.2020.05.016
30
Miller, H.M., Mayhew, L.E., Ellison, E.T., Kelemen, P., Kubo, M., Templeton, A.S., 2017, Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite, Geochimica et Cosmochimica Acta, 209, 161-183. 10.1016/j.gca.2017.04.022
31
Moore, B.J., Sigler, S., 1987, Analyses of natural gases, 1917-85 (No. 9129), US Department of the Interior, Bureau of Mines.
32
Morrill, P.L., Kuenen, J.G., Johnson, O.J., Suzuki, S., Rietze, A., Sessions, A.L., Fogel, M.M., Nealson, K.H., 2013, Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars, Geochimica et Cosmochimica Acta, 109, 222-240. 10.1016/j.gca.2013.01.043
33
Murray, J., Clément, A., Fritz, B., Schmittbuhl, J., Bordmann, V., Fleury, J.M., 2020, Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forêts geothermal site, France, Applied Geochemistry, 119, 104631. 10.1016/j.apgeochem.2020.104631
34
Neal, C., Stranger, G., 1983, Hydrogen generation from mantle source rocks in Oman, Earth and Planetary Science Letters, 66, 315-320. 10.1016/0012-821X(83)90144-9
35
Pokrovsky, O.S., Schott, J., Castillo, A., 2005, Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals, Geochimica et Cosmochimica Acta, 69, 905-918. 10.1016/j.gca.2004.08.011
36
Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006, Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer, Chemical Geology, 229(4), 331-343. 10.1016/j.chemgeo.2005.11.005
37
Schroeder, T., John, B., Frost, B.R., 2002, Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges, Geology, 30(4), 367-370. 10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2
38
Siegel, K., Vasyukova, O.V., Williams-Jones, A.E., 2018, Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador, Lithos, 308, 34-52. 10.1016/j.lithos.2018.03.003
39
Sleep, N.H., Bird, D.K., 2007, Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology, Geobiology, 5(2), 101-117. 10.1111/j.1472-4669.2007.00105.x
40
Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., Bird, D.K., 2004, H2-rich fluids from serpentinization: Geochemical and biotic implications, Proceedings of the National Academy of Sciences, 101(35), 12818-12823. 10.1073/pnas.040528910115326313PMC516479
41
Truche, L., Bourdelle, F., Salvi, S., Lefeuvre, N., Zug, A., Lloret, E., 2021, Hydrogen generation during hydrothermal alteration of peralkaline granite, Geochimica et Cosmochimica Acta, 308, 42-59. 10.1016/j.gca.2021.05.048
42
Truche, L., McCollom, T.M., Martinez, I., 2020, Hydrogen and abiotic hydrocarbons: Molecules that change the world, Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(1), 13-18. 10.2138/gselements.16.1.13
43
Wenner, D.B., 1979, Hydrogen, oxygen and carbon isotopic evidence for the origin of rodingites in serpentinized ultramafic rocks, Geochimica et Cosmochimica Acta, 43(4), 603-614. 10.1016/0016-7037(79)90168-6
44
Wenner, D.B., Taylor Jr, H.P., 1974, D/H and O18/O16 studies of serpentinization of ultramaflc rocks, Geochimica et Cosmochimica Acta, 38(8), 1255-1286. 10.1016/0016-7037(74)90120-3
45
Wood Mackenzie, 2022, Hydrogen: the US$600 billion investment opportunity, Retrieved from https://www.woodmac.com/news/opinion/hydrogen-the-us$600-billion-investment-opportunity .
46
Zgonnik, V., 2020, The occurrence and geoscience of natural hydrogen: A comprehensive review, Earth-Science Reviews, 203, 103140. 10.1016/j.earscirev.2020.103140
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 32
  • No :4
  • Pages :627-642
  • Received Date : 2022-12-12
  • Accepted Date : 2022-12-15