All Issue

2025 Vol.35, Issue 1 Preview Page

Research Article

31 March 2025. pp. 63-80
Abstract
References
1

Abbaspour, K.C., Rouholahnejad, E., Srinivasan, R., Yang, H., Kløve, B., 2015, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, Journal of Hydrology, 524, 733-752.

10.1016/j.jhydrol.2015.03.027
2

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Srinivasan, R., 2007, Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333(2-4), 413-430.

10.1016/j.jhydrol.2006.09.014
3

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998, Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 300(9), D05109.

4

Arnold, J.G., Allen, P.M., Volk, M., Williams, J.R., Bosch, D.D., 2010, Assessment of different representations of spatial variability on SWAT model performance, Transactions of the ASABE, 53(5), 1433-1443.

10.13031/2013.34913
5

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998, Large area hydrologic modeling and assessment Part I: Model development, Journal of the American Water Resources Association, 34(1), 73-89.

10.1111/j.1752-1688.1998.tb05961.x
6

Burger, J., 2019, A framework for increasing sustainability and reducing risk to ecological resources through integration of remediation planning and implementation, Environmental Research, 172, 586-595.

10.1016/j.envres.2019.02.03630875512
7

Costa, D., Zhang, H., Levison, J., 2021, Impacts of climate change on groundwater in the Great Lakes Basin: A review, Journal of Great Lakes Research, 47(6), 1613-1625.

10.1016/j.jglr.2021.10.011
8

De Vries, J.J., Simmers, I., 2002, Groundwater recharge: An overview of processes and challenges, Hydrogeology Journal, 10, 5-17.

10.1007/s10040-001-0171-7
9

Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., Huete, A., 2015, Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies, Hydrology and Earth System Sciences, 19(10), 4229-4256.

10.5194/hess-19-4229-2015
10

Garg, V., Nikam, B.R., Thakur, P.K., Aggarwal, S.P., 2013, Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method, International Journal of Hydrology Science and Technology, 3(2), 141-159.

10.1504/IJHST.2013.057626
11

Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007, The soil and water assessment tool: Historical development, applications, and future research directions, Transactions of the ASABE, 50(4), 1211-1250.

10.13031/2013.23637
12

Guinn Garrett, C., Vulava, V.M., Callahan, T.J., Jones, M.L., 2012, Groundwater-surface water interactions in a lowland watershed: Source contribution to stream flow, Hydrological Processes, 26(21), 3195-3206.

10.1002/hyp.8257
13

Hong, S.Y., Zhang, Y.S., Kim, Y.H., Jung, K.H., Lee, Y.J., Choe, E., Jung, K.Y., 2008, Development of soil information system and its application in Korea, National Academy of Agricultural Science, 1-17.

14

Kim, D.W., Chung, E.G., Kim, K., Kim, Y., 2022, Impact of riverbed topography on hydrology in small watersheds using Soil and Water Assessment Tool, Environmental Modelling & Software, 152, 105383.

10.1016/j.envsoft.2022.105383
15

Lee, J., Jung, C., Kim, S., Kim, S., 2019, Assessment of climate change impact on future groundwater-level behavior using SWAT groundwater-consumption function in Geum River Basin of South Korea, Water, 11(5), 949.

10.3390/w11050949
16

Lee, S., Kim, D., McCarty, G.W., Anderson, M., Gao, F., Lei, F., Sun, L., 2024, Spatial calibration and uncertainty reduction of the SWAT model using multiple remotely sensed data, Heliyon, 10(10), e30923.

10.1016/j.heliyon.2024.e3092338778950PMC11108841
17

Lewis, E., Birkinshaw, S., Kilsby, C., Fowler, H.J., 2018, Development of a system for automated setup of a physically-based, spatially-distributed hydrological model for catchments in Great Britain, Environmental Modelling & Software, 108, 102-110.

10.1016/j.envsoft.2018.07.006
18

McMillan, H., Krueger, T., Freer, J., 2012, Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality, Hydrological Processes, 26(26), 4078-4111.

10.1002/hyp.9384
19

McMillan, J.M., Birkmann, S., Tangwanichagapong, S., Jamshed, A., 2022, Spatial planning and systems thinking tools for climate risk reduction: A case study of the Andaman Coast, Thailand, Sustainability, 14(13), 8022.

10.3390/su14138022
20

Moon, H.T., Yoon, S.K., Kim, J.S., Moon, Y.I., 2024, Assessing future urban flood hazard: A comprehensive approach to estimating the implications of future rainfall scenarios, Journal of Flood Risk Management, 17(3), e13000.

10.1111/jfr3.13000
21

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3), 885-900.

10.13031/2013.23153
22

Moriasi, D.N., Rossi, C.G., Arnold, J.G., Tomer, M.D., 2012, Evaluating hydrology of the soil and water assessment tool (SWAT) with new tile drain equations, Journal of Soil and Water Conservation, 67(6), 513-524.

10.2489/jswc.67.6.513
23

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2005, Soil and Water Assessment Tool: Theoretical documentation version 2005, Retrieved from https://swat.tamu.edu/media/1292/SWAT2005theory.pdf.

24

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011, Soil and Water Assessment Tool: Theoretical documentation version 2009, Texas Water Resources Institute, 647p.

25

Paradi, J.C., Yang, Z., Zhu, H., 2011, Assessing bank and bank branch performance: Modeling considerations and approaches, In: Cooper, W., Seiford, L., Zhu, J. (Eds.), Handbook on Data Envelopment Analysis, Springer, 315-361.

10.1007/978-1-4419-6151-8_13
26

Sadiqi, S.S.J., Nam, W.H., Lim, K.J., Hong, E., 2024, Investigating nonpoint source and pollutant reduction effects under future climate scenarios: A SWAT-based study in a highland agricultural watershed in Korea, Water, 16(1), 179.

10.3390/w16010179
27

Tan, M.L., Gassman, P.W., Yang, X., Haywood, J., 2020, A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes, Advances in Water Resources, 143, 103662.

10.1016/j.advwatres.2020.103662
28

Thiessen, A.H., 1911, District No. 10, Great Basin, Monthly Weather Review, 39(8), 1248-1248.

10.1175/1520-0493(1911)39<1248a:DNGB>2.0.CO;2
29

Van Liew, M.W., Veith, T.L., Bosch, D.D., Arnold, J.G., 2007, Suitability of SWAT for the conservation effects assessment project: Comparison on USDA Agricultural Research Service watersheds, Journal of Hydrologic Engineering, 12(2), 173-189.

10.1061/(ASCE)1084-0699(2007)12:2(173)
30

Wellen, C., Kamran-Disfani, A.R., Arhonditsis, G.B., 2015, Evaluation of the current state of distributed watershed nutrient water quality modeling, Environmental Science & Technology, 49(6), 3278-3290.

10.1021/es504955725691078
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 35
  • No :1
  • Pages :63-80
  • Received Date : 2024-12-15
  • Revised Date : 2025-02-20
  • Accepted Date : 2025-03-19